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Abstract

Background: Margin reflex distance 1 (MRD1), margin reflex distance 2 (MRD2), and levator muscle function (LF) are crucial
metrics for ptosis evaluation and management. However, manual measurements of MRD1, MRD2, and LF are time-consuming,
subjective, and prone to human error. Smartphone-based artificial intelligence (AI) image processing is a potential solution to
overcome these limitations.

Objective: We propose the first smartphone-based AI-assisted image processing algorithm for MRD1, MRD2, and LF
measurements.

Methods: This observational study included 822 eyes of 411 volunteers aged over 18 years from August 1, 2020, to April 30,
2021. Six orbital photographs (bilateral primary gaze, up-gaze, and down-gaze) were taken using a smartphone (iPhone 11 Pro
Max). The gold-standard measurements and normalized eye photographs were obtained from these orbital photographs and
compiled using AI-assisted software to create MRD1, MRD2, and LF models.

Results: The Pearson correlation coefficients between the gold-standard measurements and the predicted values obtained with
the MRD1 and MRD2 models were excellent (r=0.91 and 0.88, respectively) and that obtained with the LF model was good
(r=0.73). The intraclass correlation coefficient demonstrated excellent agreement between the gold-standard measurements and
the values predicted by the MRD1 and MRD2 models (0.90 and 0.84, respectively), and substantial agreement with the LF model
(0.69). The mean absolute errors were 0.35 mm, 0.37 mm, and 1.06 mm for the MRD1, MRD2, and LF models, respectively.
The 95% limits of agreement were –0.94 to 0.94 mm for the MRD1 model, –0.92 to 1.03 mm for the MRD2 model, and –0.63
to 2.53 mm for the LF model.

Conclusions: We developed the first smartphone-based AI-assisted image processing algorithm for eyelid measurements.
MRD1, MRD2, and LF measures can be taken in a quick, objective, and convenient manner. Furthermore, by using a smartphone,
the examiner can check these measurements anywhere and at any time, which facilitates data collection.

(JMIR Mhealth Uhealth 2021;9(10):e32444) doi: 10.2196/32444
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Introduction

Margin reflex distance 1 (MRD1), margin reflex distance 2
(MRD2), and levator muscle function (LF) are crucial for the
evaluation and management of ptosis, a condition in which the
upper eyelid droops over the eye [1]. MRD1 is defined as the
distance between the upper eyelid margin and the center of the
pupillary light reflex, whereas MRD2 is defined as the distance
between the lower eyelid margin and the center of the pupillary
light reflex. The LF is defined as the distance the upper eyelid
margin moves from down-gaze to up-gaze without any eyebrow
movement. According to a normal MRD1 of 4-5 mm, ptosis
can be classified as mild (MRD1: 3-4 mm), moderate (MRD1:
2-3 mm), or severe (MRD1: 0-2 mm).

Manual measurements of MRD1, MRD2, and LF are
time-consuming, subjective, and prone to human error [2]. More
accurate measurements may be determined using a slit-lamp
biomicroscope [3], and several automatic and semiautomatic
photographic analysis techniques have been developed to obtain

relatively objective measurements of MRD1 and MRD2 [4-6].
However, in these studies, a standardized environment is
required for taking the photographs. The Volk Eye Check
System measures MRD1 automatically using photographs taken
by an integrated camera; however, this system tends to
overestimate MRD1 in patients with ptosis [7]. To the best of
our knowledge, there are no automatic photographic analysis
techniques available for LF measurements.

A smartphone is more portable and convenient than a traditional
photography room and slit-lamp biomicroscope. Artificial
intelligence (AI), specifically deep learning (also known as deep
neural network learning), is a new and popular area of research
that yields impressive results and is growing rapidly.
Smartphone-based deep learning image processing is a potential
solution to overcome these limitations for measurements of
MRD1, MRD2, and LF (Figure 1). We developed the first
smartphone-based AI-assisted image processing algorithm for
MRD1, MRD2, and LF measurements, which was validated in
comparison with gold-standard measurements in an
observational study.

Figure 1. Smartphone-based artificial intelligence–assisted prediction of eyelid measurements. MAIA: medical artificial intelligence assistant (Muen
Biomedical and Optoelectronic Technologist, Inc; Version 1.2.0).

Methods

Study Design
This observational study included 822 eyes of 411 volunteers
aged over 18 years who were referred to a plastic surgery clinic
for blepharoplasty between August 1, 2020, and April 30, 2021.
The study was approved by the institutional review board of
Chang Gung Memorial Hospital. Volunteers with eyelid defects

or deformities, history of corneal injury, enophthalmos, and
anophthalmia were excluded.

Photographs and Gold-Standard Measurements
(Actual Values)
A 20×20-mm scale was placed on the nasal dorsum as a
reference. The scale was only necessary for gold-standard
measurements and was not required for deep learning model
training or for determining the accuracy of the model.
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Bilateral orbital photographs of each patient (standing or sitting;
total 6 photographs including bilateral primary gaze, up-gaze,
and down-gaze) were taken using a smartphone (iPhone 11 Pro
Max, with flash and a 1:1 ratio) held at the same level between
the patient’s eyes at a distance of approximately 20-30 cm,
which simulated the distance between the patient and doctor
when the doctor uses a handheld ruler to measure MRD1,
MRD2, and LF in the clinic.

The photographs were magnified on the computer, and MRD1,
MRD2, and LF measurements were taken by two doctors
independently (measured in increments of 0.25 mm). The
doctors drew a horizontal line across the upper eyelid margin,
light reflex, and lower eyelid margin to the 20×20-mm scale to
obtain the MRD1, MRD2, and LF measurements. The mean
value of measurements obtained by the two doctors was taken
as the gold-standard measurement (actual value), which served
as the input data for deep learning model training (Figure 2).

Figure 2. Photographs and gold-standard measurements (real values) (A) Six orbital photographs, including bilateral primary gaze, up-gaze, and
down-gaze, were taken by a smartphone. (B) The primary gaze photograph was then magnified for margin reflex distance 1 (MRD1) and MRD2
measurements. (C) The up-gaze and down-gaze photographs were then magnified for levator muscle function (LF) measurements. (D) A 20×20-mm
scale.

Usually, in ptotic eyelids without a corneal light reflex, the
distance (in millimeters) that the eyelid must be lifted is recorded
as a negative value, which is the MRD1. However, the distance
the examiner lifts the eyelid is very subjective and therefore
cannot be used as a gold-standard measurement. Accordingly,
in this study, all MRD1 measurements in ptotic eyelids without
a corneal light reflex were set to 0.

Photograph Normalization
Segmentation of primary-gaze orbital photographs (a square
region around the light reflex as a center) was automatically
performed by our software algorithm. We used LabelImage [8]
to label the pupil light reflex location (X, Y), and then built a

MobilenetV2 [9] model to train a regression model that can find
a pupil light reflex coordinate. Square orbital pictures were
automatically cropped (image size/4) using the light reflex
coordinate extension after determining the light reflex
coordinate. These segmented square photographs were
considered the “normalized eye photographs,” which were used
as input data for MRD1 and MRD2 deep learning model
training. Segmentations of up- and down-gaze orbital
photographs were automatically merged into one photograph
by our software algorithm. These segmented and merged
photographs were considered the “normalized eye photographs”
for LF deep learning model training (Figure 3).
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Figure 3. Photograph normalization. (A) Autosegmentation of primary-gaze orbital photographs. These photographs are considered the “normalized
eye photographs” for margin reflex distance 1 (MRD1) and MRD2 model training. (B) Autosegmentation of up- and down-gaze orbital photographs,
which were then merged into one photograph. These photographs are considered the “normalized eye photographs” for levator muscle function (LF)
model training.

Model Training: Image Analysis by Automatic Deep
Learning Software
The normalized eye photographs and gold-standard
measurements of MRD1, MRD2, and LF were compiled using
medical artificial intelligence assistant (MAIA) software (Muen
Biomedical and Optoelectronic Technologist Inc; Version 1.2.0)
to analyze the image features and classify different situations.
MAIA software automatically optimizes parameters for training
models, including multiple convolutional neural network (CNN)
models such as SE ResNet and EfficientNet [10,11].

The input data were processed with the following steps: (1)
images were resized into 256×256 using a bilinear interpolation
method, (2) images were augmented using horizontal flip and
randomly rotated using the albumentations method [12], and
(3) five-fold cross-validation was used to estimate the
performance of the models.

The neural network architecture chooses an optimal network
for memory consumption. We added the dropout function and
applied different data augmentation methods to prevent the
model from overfitting to our dataset [13,14]. The dropout rate
was set from 0.25 to 0.5 for regularization. We then trained the
model using minibatches of size 32, which were selected based
on memory consumption [15]. The learning rate was tuned
based on cosine annealing and a one-cycle policy strategy
[16,17]. Using the cosine annealing schedule, the model
repeatedly fits the gradient to the local minimum. The network
was trained end-to-end using the Adam optimization algorithm,
which optimized the mean square error as a loss function [18].
Lastly, we ensembled all of the models using the average output
of the model to obtain a more robust result, minimize the bias
of prediction error, and improve the prediction accuracy of the
CNN models (Figure 4).

MAIA software was used with Python 3.x and PyTorch 1.1.x
for Windows 10.
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Figure 4. The convolutional neural network architecture of medical artificial intelligence assistant (MAIA) software.

Model Performance Evaluation
In total, three AI models, the MRD1, MRD2, and LF models,
were trained. The photograph processing time for each model
was recorded. The mean absolute error (MAE) and mean square
error (MSE) were selected to evaluate the performance of model
prediction. The Pearson correlation coefficient was used to
assess the correlation between the deep learning model
prediction and gold-standard measurements. The intraclass
correlation coefficient (ICC) was used to compare the agreement
between the deep learning model prediction and the
gold-standard measurements. Statistical analyses were
performed using R software (version 4.1.0; R Foundation).
Bland-Altman analysis was used to compare the agreement
between the deep learning model prediction and the
gold-standard measurements. Statistical significance was set at
P<.05.

Results

Data Characteristics
We collected 822 eye photographs from 411 volunteers,
including 344 (83.7%) women and 67 (16.3%) men. The
photographs were subsequently randomly divided into two
groups: 90% as the training/validation group and 10% as the
test group. Within the training/validation group, 80% of
photographs were used as the training group and 20% were used
as the validation group (Figure 5). The case numbers and sex
ratios in the MRD1, MRD2, and LF models are shown in Table
1. In the LF model, 137 normalized eye photographs were
excluded because the up- and down-gaze orbital photographs
were not well merged.

Figure 5. Data organization for model evaluation. Ninety percent of the data were used as the training/validation group and 10% were used as the test
group; 80% of the data from the training/validation group were used as the training group and 20% were used as the validation group.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 10 | e32444 | p. 5https://mhealth.jmir.org/2021/10/e32444
(page number not for citation purposes)

Chen et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Case numbers and sex ratios in each model.

Males, n (%)Cases, n (%)Model

MRD1a

154 (18.7)822 (100.0)Total

142 (19.2)740 (90.0)Training group

12 (14.6)82 (10.0)Test group

MRD2b

154 (18.7%)822 (100.0)Total

142 (9.2%)740 (90.0)Training group

12 (14.6%)82 (10.0)Test group

LFc

122 (17.8)685 (100.0)dTotal

113 (8.3)617 (90.0)Training group

9 (13.2)68 (10.0)Test group

aMRD1: marginal reflex distance 1.
bMRD2: marginal reflex distance 2.
cLF: levator muscle function.
dIn the LF model, 137 normalized eye photographs were excluded because the up- and down-gaze orbital photographs were not well merged.

Reliability of Gold-Standard Measurements
The gold-standard measurements of MRD1, MRD2, and LF are
summarized in Table 2. To determine the reliability, the

measurements performed by the two doctors were evaluated
using MAE, MSE, Pearson correlation coefficient, ICC, and
Bland-Altman analysis. The reliability of the two doctors was
excellent (Table 3, Figure 6).

Table 2. Summary of gold-standard measurements.

RangeMean (SD)NMeasurements

0.00-6.002.59 (1.21)822MRD1a (mm)

1.50-10.005.51 (0.83)822MRD2b (mm)

3.50-18.0012.1 (2.12)685dLFc selected (mm)

aMRD1: marginal reflex distance 1.
bMRD2: marginal reflex distance 2.
cLF: levator muscle function.
dIn the LF model, 137 normalized eye photographs were excluded because the up- and down-gaze orbital photographs were not well merged.
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Table 3. Reliability of gold-standard measurements (actual values) manually performed by the two doctors.

LFcMRD2bMRD1aMetric

0.0180.0080.007MAEd

0.0020.0010.005MSEe

0.9990.9980.999Pearson correlation coefficient

0.9990.9980.999ICCf (agreement)

0.9990.9980.999ICC (consistency)

aMRD1: marginal reflex distance 1.
bMRD2: marginal reflex distance 2.
cLF: levator muscle function.
dMAE: mean absolute error.
eMSE: mean square error.
fICC: intraclass correlation coefficient.

Figure 6. Scatter plots and Bland-Altman plots of gold-standard measurements (real values) for marginal reflex distance (MRD)1 (A), MRD2 (B), and
levator muscle function (LF) (C) performed by two doctors.

Validation of the Training Model
There were 740 patients in the training/validation group included
in the MRD1 and MRD2 models, and 617 patients included in

the training/validation group in the LF model. The validation
results based on MAE, MSE, Pearson correlation coefficient,
ICC, and Bland-Altman analysis were good overall (Table 4,
Figure 7).
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Table 4. Validation and test results of the training model.

TestValidationMetric

LFMRD2MRD1LFcMRD2bMRD1a

1.0590.3750.3490.2900.1580.087MAEd (mm)

1.7090.2460.2270.3030.0500.023MSEe

0.7280.8750.9080.9670.9630.992Pearson correlation coefficient

0.6920.8370.9030.9660.9620.992ICCf (Agreement)

0.6890.8370.9020.9660.9630.992ICC (Consistency)

aMRD1: marginal reflex distance 1.
bMRD2: marginal reflex distance 2.
cLF: levator muscle function.
dMAE: mean absolute error.
eMSE: mean square error.
fICC: intraclass correlation coefficient.

Figure 7. Scatter plots and Bland-Altman plots of validation results of the marginal reflex distance (MRD)1(A), MRD2 (B), and levator muscle function
(LF) (C) training models.

Test Results of the MRD1, MRD2, and LF models
A total of 82 patients were used as the test group in the MRD1
and MRD2 models, and 68 patients were used as the test group
in the LF model. The test results determine the accuracy of the
model. It took 2.09 seconds and 2.15 seconds for the MRD1
and MRD2 models to respectively process 82 photos, and it
took 1.97 seconds for the LF model to process 68 photos. The
MAE of the predicted values to the gold-standard measurements
of MRD1, MRD2, and LF were 0.35 mm, 0.37 mm, and 1.06
mm, respectively, and the MSE of the predicted values to the
gold-standard measurements of MRD1, MRD2, and LF were
0.23 mm, 0.25 mm, and 1.71 mm, respectively.

The correlations between the gold-standard measurements and
the values predicted by the MRD1 and MRD2 models were
excellent (r=0.91 and 0.88, respectively). The correlation
between the test results obtained with the LF model and
gold-standard measurements was good (r=0.73).

The ICCs (agreement) between the gold-standard measurements
and the values predicted with the MRD1, MRD2, and LF models
were 0.90, 0.84, and 0.69, respectively. The ICCs (consistency)
between the gold-standard measurements and the values
predicted with the MRD1, MRD2, and LF models were 0.90,
0.84, and 0.69, respectively. These results indicate excellent
agreement between the gold-standard measurements and the
values predicted with the MRD1and MRD2 models, and
substantial agreement with the LF model [19].

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 10 | e32444 | p. 8https://mhealth.jmir.org/2021/10/e32444
(page number not for citation purposes)

Chen et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Bland-Altman analyses showed that the bias between the
gold-standard measurements and the values predicted by the
MRD1, MRD2, and LF models was –0.004 mm (95% CI
–0.1090 to 0.1015 mm), 0.056 mm (95% CI –0.05347 to 0.1646
mm), and –0.047 mm (95% CI –0.3658 to 0.2713 mm),

respectively. The 95% limits of agreement were −0.94 to 0.94
mm for the MRD1 model, –0.92 to 1.03 mm for the MRD2
model, and –2.63 to 2.53 mm for the LF model (Table 4, Figure
8).

Figure 8. Scatter plots and Bland-Altman plots of the test results of the marginal reflex distance (MRD)1(A), MRD2 (B), and levator muscle function
(LF) (C) training models.

Representative heat maps in Figure 9 demonstrate the image
region with the highest feature density and the most
discriminative value (red), which was the region between the
upper eyelid margin and light reflex in the MRD1 model, the

region between the lower eyelid margin and light reflex in the
MRD2 model, and the region between the upper eyelid margin
in a merged up- and down-gaze in the LF model.

Figure 9. Representative heat maps of marginal reflex distance (MRD)1(A), MRD2 (B), and levator muscle function (LF) (C). The red color indicates
regions with the highest discriminative value.
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Discussion

Principal Findings
Since Putterman and Urist introduced the MRD, MRD1 has
become an important tool for pre and postoperative ptosis
evaluation [20,21]. From Putterman’s description, the MRD is
measured in millimeters, and to determine MRD1, the examiner
uses one hand to hold a muscle light and the other hand to hold
a ruler to measure the distance from the light reflex on the
cornea to the upper eyelid margin. The examiner also needs
another hand (a third hand) to hold the patient’s eyebrow to
prevent eyebrow elevation [22]. As a result, an examiner is less
likely to perform the measurement on their own. Smartphones
combine deep learning image processing as a solution to
overcome this limitation.

Several automatic and semiautomatic photographic analysis
approaches have been developed to provide a relatively objective
assessment of MRD1 and MRD2 [4-6]. However, these studies
compared their automatic and semiautomatic MRD1 and MRD2
assessments to manual measurements, not to gold-standard
measurements, and the former are subjective and associated
with a risk of human error. There are no automatic photographic
analysis approaches for measuring the LF. To the best of our
knowledge, ours is the first AI software algorithm capable of
predicting MRD1, MRD2, and LF measurements with
completely automated image processing and comparison of the
prediction results with gold-standard measurements.

Manual MRD1, MRD2, and LF measurements are
time-consuming, subjective, and have a limited precision of
approximately 0.5 mm. According to Boboridis et al [2], the
mean difference in measured MRD between doctors with
varying degrees of experience was up to 0.5 mm, indicating
poor repeatability. In this study, the correlations between the
gold-standard measurements and the values predicted by the
MRD1 and MRD2 models were excellent and the correlation
for the values predicted by the LF model was good. The ICC
results showed excellent agreement between the gold-standard
measurements and the predicted values by the MRD1and MRD2
models, and substantial agreement with the values predicted by
the LF models. The MAE values were 0.35 mm, 0.37 mm, and
1.06 mm for the MRD1, MRD2, and LF models, respectively,
and the variance increased with length. The 95% limits of
agreement were −0.94 to 0.94 mm for the MRD1 model, –0.92
to 1.03 mm for the MRD2 model, and –2.63 to 2.53 mm for the
LF model. These results showed that the MRD1 and MRD2
models were equivalent and might even be better than manual
measurements.

The performance of the LF model was not as excellent as that
of the MRD1 and MRD2 models. One reason is that the longer
the measurement, the greater the variance in the measurements.
The second reason is the error during photograph normalization
in the LF model. In some cases, the software algorithm could
not merge the up- and down-gaze orbital photographs perfectly.
The third reason is overfitting, which occurs when a model does
not generalize adequately from observed data to unknown data
[23]. The LF model in our study had good validation results in
the training set but had limited success on the test set. An

extended dataset might enhance the prediction accuracy,
especially in a complex model such as the LF model used in
this study [24].

Some AI models face a conundrum: their performance on the
test set is good, but it is significantly lower when used in a
clinical scenario. One issue is that the training data are collected
under stringent conditions (such as a strictly controlled
photography environment), which makes it difficult for the
trained model to adjust to clinical situations (such as at the
clinic). In this study, the models were created to simulate a
clinical scenario. The ocular photos for model training were
obtained by a smartphone to simulate the doctor checking
patients’ eyelid measurements in the clinic using a handheld
ruler. Therefore, we believe that our model can adapt well to
clinical use.

We used a deep learning algorithm to establish three models:
the MRD1, MRD2, and LF models. We intend to integrate these
models into a cloud-based service available on the internet.
Based on these three models, we will also develop an app
software contained within a smartphone, which can work offline.
In the future, the examiner can use one hand to hold a
smartphone and snap six images, including bilateral primary
gaze, up-gaze, and down-gaze, while holding the patient’s brow
with the other. The MRD1, MRD2, and LF measurements can
then be predicted by the deep learning app (Figure 1). This is
a quick, objective, and convenient method for obtaining MRD1,
MRD2, and LF measurements. Furthermore, the examiner can
check these measurements anywhere and at any time using a
smartphone, which also facilitates data collection.

Limitations
This study had some limitations. Mascara, false lashes, obvious
eyelid creases, and the lack of well-merged orbital photographs
interfered with the model prediction. Negative MRD1 and
MRD2 levels could not be predicted, which is another limitation.
In the training/validation group, the MRD1 measurements of
25 ptotic eyelids (25/740, 3.4%) without corneal light reflex
were recorded as 0 mm in this study. Surprisingly, the MRD1
model predicted negative values in 18 eyelids (18/25, 72%) of
these cases, implying that the algorithm may eventually learn
to predict negative values on its own. When taking orbital
photographs, fine movement of patients or the smartphone
cannot be completely avoided, resulting in imperfectly merged
images, which is a defect of our current algorithm. The merged
photos will be displayed by the cloud-based service and app
software in the future, so that examiners can discard the images
that are not perfectly merged and retake orbital photographs to
obtain better-merged images.

Conclusion
In this study, we developed the first smartphone-based
AI-assisted image processing algorithm for eyelid
measurements. MRD1, MRD2, and LF measurements can be
taken in a quick, objective, and convenient manner. Furthermore,
by using a smartphone, the examiner can check these
measurements anywhere and at any time, which also makes
data collection easier.
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LF: levator muscle function
MAE: mean absolute error
MAIA: medical artificial intelligence assistant
MRD: marginal reflex distance
MSE: mean square error
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